Tomad una caja (poliedro convexo) que tengáis en casa, por ejemplo una caja de zapatos. Contad el número de caras, aristas y vértices de la misma. Veréis que dicha caja tiene seis caras, doce aristas y ocho vértices. Ahora tomad el número de caras, restadle el número de aristas y sumadle al resultado el número de vértices. El resultado es
Probemos otra cosa. Cortemos un pico a la caja. Obtenemos así una cara más (para un total de 7), dos vértices más ya que desaparece uno pero aparecen tres (tenemos en total 10) y tres aristas nuevas (ahora hay 15). Realicemos la misma operación:
Dividamos ahora cualquier cara en el número de partes que queramos. Contemos ahora cuántas, caras, aristas y vértices tiene la figura obtenida. El resultado de la operación anterior es…
Pero dejemos ya la caja. Echad un ojo por ahí y buscad otro objeto que cumpla con la definición de poliedro convexo y realizad la misma operación: caras menos aristas más vértices. El resultado es…sí, efectivamente,
Podéis probar con cualquier cosa que tengáis en casa que sea un poliedro convexo. Siempre obtendréis el mismo resultado:
Este resultado es conocido como fórmula de Euler:
En un poliedro convexo conLa cantidad de figuras que cumplen la definición de poliedro convexo es tan enormemente grande que parece increíble que tengan una característica común. Este hecho tan sorprendente hace que califique a la fórmula de Euler como maravilla matemática. Y, cómo no, tuvo que ser el gran Leonhard quien nos abriera los ojos, como tantas veces.caras,
aristas y
vértices se cumple que:
No hay comentarios:
Publicar un comentario